Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey.

نویسندگان

  • A Szilágyi
  • P Závodszky
چکیده

BACKGROUND Proteins from thermophilic organisms usually show high intrinsic thermal stability but have structures that are very similar to their mesophilic homologues. From prevous studies it is difficult to draw general conclusions about the structural features underlying the increased thermal stability of thermophilic proteins. RESULTS In order to reveal the general evolutionary strategy for changing the heat stability of proteins, a non-redundant data set was compiled comprising all high-quality structures of thermophilic proteins and their mesophilic homologues from the Protein Data Bank. The selection (quality) criteria were met by 64 mesophilic and 29 thermophilic protein subunits, representing 25 protein families. From the atomic coordinates, 13 structural parameters were calculated, compared and evaluated using statistical methods. This study is distinguished from earlier ones by the strict quality control of the structures used and the size of the data set. CONCLUSIONS Different protein families adapt to higher temperatures by different sets of structural devices. Regarding the structural parameters, the only generally observed rule is an increase in the number of ion pairs with increasing growth temperature. Other parameters show just a trend, whereas the number of hydrogen bonds and the polarity of buried surfaces exhibit no clear-cut tendency to change with growth temperature. Proteins from extreme thermophiles are stabilized in different ways to moderately thermophilic ones. The preferences of these two groups are different with regards to the number of ion pairs, the number of cavities, the polarity of exposed surface and the secondary structural composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Structural and Evolutionary Attributes of Escherichia coli and Thermus thermophilus Small Ribosomal Subunits: Signatures of Thermal Adaptation

Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both spe...

متن کامل

Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges

INTRODUCTION Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. METHODS Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homol...

متن کامل

Distributions of structural features contributing to thermostability in mesophilic and thermophilic K/L barrel glycosyl hydrolases

Analysis of the structural basis for thermostability in proteins has come mainly from pairwise comparisons of mesophilic and thermophilic structures and has often yielded conflicting results. Interpretation of these results would be enhanced by knowing the normal range of features found for mesophilic proteins. In order to provide the average and distribution values of structural features among...

متن کامل

Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms

MOTIVATION Understanding the basis of protein stability in thermophilic organisms raises a general question: what structural properties of proteins are responsible for the higher thermostability of proteins from thermophilic organisms compared to proteins from mesophilic organisms? RESULTS A unique database of 373 structurally well-aligned protein pairs from thermophilic and mesophilic organi...

متن کامل

Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2000